近日,中国科学院精密测量科学与技术创新研究院徐君、邓风研究团队在γ-al2o3微观结构研究中取得进展,利用35.2 t的超高强磁场,结合所发展的先进二维固体nmr谱学方法揭示了γ-al2o3表面和体相中氧物种的结构及其空间关联。
γ-al2o3是一种催化剂和催化剂载体,广泛应用于乙醇脱水、丙烷脱氢、异构化、烷基化和催化裂化等工业催化过程。γ-al2o3上氧原子的形态(如羟基或缺陷)和配位状态影响其局部环境和表面性质(酸碱性),进而影响其催化性能。对氧物种的表征是深入了解其结构和物理化学性质,以及进行性能优化的基础。17o nmr谱学正逐渐成为表征氧化物材料的一种有效手段,但常受到核四极相互作用、相对较低旋磁比和极低17o丰度等多重因素的制约。此前,该团队曾利用动态核极化表面增强(dnp-sen)nmr技术结合17o同位素富集方法在γ-al2o3上获得17o nmr信号的两个数量级的增强,实现对其表面氧物种的直接观测。尽管同位素富集能够一定程度上解决17o nmr观测灵敏度低的问题,但对各种氧物种空间关联的nmr观测仍然是挑战,迄今尚未见报道。
固体nmr谱学的重要特点之一是能够利用射频脉冲技术操控特定原子核从原子-分子尺度来探测核间的空间相关或键连结构信息。近期,精密测量院团队与美国国家强磁场实验室合作,借助稳态超高强磁场35.2 t(1.5 ghz)在提升nmr观测灵敏度和分辨率上的优势,结合前期自主开发的半整数四极核二维双量子(dq-sq)脉冲实验方法,在γ-al2o3上获得第一张二维17o-17o同核双量子固体nmr相关谱,揭示不同配位状态的氧物种之间空间关联。此外,该团队还利用精密测量院的800 mhz(18.8 t)谱仪平台,通过高速魔角旋转(mas,40 khz)下的氢检测二维1h-17o异核多量子相关脉冲nmr 实验,成功区分γ-al2o3表面吸附水、羟基以及非羟基(裸氧)物种并获得它们之间空间临近的信息,实现了对γ-al2o3上氧物种结构从体相到表面的高效nmr表征。对氧中心的深入研究为调控γ-al2o3的性质和合理设计改进型氧化物催化剂提供了重要依据,该研究也展示了先进nmr谱仪技术和高效nmr脉冲方法相结合在原子-分子尺度挖掘材料微观结构信息的巨大潜力。
相关成果发表于《自然-通讯》。研究工作得到国家自然科学基金委、中科院以及湖北省科技厅的支持。
γ-al2o3的二维17o-17o dq-sq同核双量子nmr图谱以及氧物种的结构模型