二维材料具有原子级厚度和较高的比表面积,所有原子处于表面,导致其表面对表面吸附和外界环境较为敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望成为下一代小型化电子器件的核心材料。为实现此类应用,需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法刻蚀或化学溶液湿法腐蚀,可对其进行加工剪裁。然而,在这些加工步骤中,二维材料需要接触光刻胶、溶剂以及高能离子等,带来样品的表面污染及边界钝化等问题。在电子学器件工作过程中,污染物作为电子散射中心,降低了材料的导电性,从而影响器件性能的提升,这种现象对于二维材料电子器件尤为明显。因此,实现大面积二维材料的无污染图案化剪裁是亟待解决的科学问题。
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件重点实验室n07组生魏争,在导师、研究员张广宇的指导下,发展出一种全新的二维材料图案化的方法。类似于传统的雕刻技术,该方法利用在手套箱中搭建的电动位移系统,通过金属钨针尖在二维材料表面的机械刮擦实现直写图案化。该直写图案化方法具有大面积、快速和低成本等优势,且无须掩膜版、化学溶剂或高能离子辅助,裁剪下多余的材料易于去除,得到的样品表面与边界十分洁净。该方法适用于晶圆级尺寸二维材料的图案化加工,其精度能够达到约1微米,逼近紫外光刻精度。另外,图案化加工系统位于手套箱惰性气体氛围中,为加工易氧化的样品提供有利条件。研究人员进一步将该方法得到的二硫化钼条带作为沟道材料,结合转移电极的方法,制备出无须曝光的高质量场效应晶体管器件,该器件具有较高的场效应迁移率和电流开关比,且电极与沟道材料之间的接触电阻和肖特基势垒高度可有效降低。
该直写图案化方法对于不同类型的二维和薄膜材料(包括石墨烯、二硫化钼、氮化硼、金属薄膜、氧化物薄膜和有机物薄膜等)具有普适性。直写图案化为制备高质量、超洁净的电子学与光电子学器件提供了简单、高效、低成本的新策略。相关研究成果发表在2d materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、中科院前沿科学重点研究项目、国家重点研发计划和中科院青年创新促进会的资助。
单层二硫化钼的直写图案化。(a)直写图案化实验装置;(b)直写过程示意图;(c)图案化的晶圆级单层二硫化钼;(d)蓝宝石衬底上各种图案的单层二硫化钼的光学显微镜图像
上一篇:研究发现氮添加影响亚热带森林生态系统林下植物叶片功能性状及土壤碳动态
下一篇: