正文

地质地球所研究提出基于深度神经网络的全波形反演地质体结构的通用反演方法 -凯发k8国际首页登录

  以为代表的勘探是勘探地球物理学的国际前沿和热点研究领域,对勘探开发复杂构造的矿产资源具有现实与科学意义。深度学习是研究中的一个新领域,而深度神经网络是一种强大的模拟人脑对复杂信息处理的数学模型,其本质上是构建多隐层的神经网络模型,通过大规模数据训练,得到大量更具代表性的信息。

  全波形反演(fwi)是高分辨率重构地下结构的一类重要方法,该方法的核心思想是借助地震波形包含的丰富信息,利用观测到的数据和模拟数据的最优匹配进行地下介质模型的重构。常规的全波形反演的不适定性及目标泛函的高度非线性导致全波形反演具有多局部极值,给问题的求解带来了挑战。此外,该方法还需要密集的波场模拟以估计梯度和步长。

  中国科学院地质与地球物理研究所后何清龙与合作导师、研究员王彦飞提出了一种基于深度神经网络(dnn)的全波形反演地质体结构的通用反演方法。该方法的主要思想是基于万能逼近定理,使用深度神经网络的权重对物理参数进行重新参数化,将原反演问题转化为物理原理约束下的网络参数的重构问题。该反演方法的优势是重参数化的网络具有对抗神经网络的功能(gan),网络的稀疏表示信息使该方法具有隐式正则化的作用,因此,其适合求解不适定的非线性反问题。此外,该方法仅需要一阶导数信息,因此,具有高计算效率。通过使用多个图形处理单元(gpu)和中央处理单元(cpu)进行权重更新和波场正演模拟,使其能够充分利用硬件对算法进行加速。

  相关研究成果以reparameterized full-waveform inversion using deep neural networks为题,发表在geophysics上。研究工作得到国家自然科学基金和国家重点研发计划项目的支持。

图1 全波形反演深度神经网络结构

图2 真实地质模型(左)与深度神经网络全波形反演结果(右)

图3 重构结果垂直剖面对比。(左)水平位置1.2 km;(中)水平位置2.8 km;(右)水平位置3.8 km


研究团队单位:地质与地球物理研究所
来源:
爱科学

上一篇:合肥研究院在多波长光声光谱测量气溶胶吸收研究中获进展

下一篇:研究揭示禾本科植物早期演化历史

登录注册
欢迎内容投稿或举报!e-mail: ikx@ikx.cn
凯发天生赢家一触即发官网 copyright © 爱科学 iikx.com "));
网站地图