正文

授时中心时间尺度算法研究获进展 -凯发k8国际首页登录

kalman滤波时间尺度算法是时间产生和保持工作的常用方法,在守时实践中具有重要的实用价值。然而,当钟差数据异常时,会使kalman滤波时间尺度算法中状态估计出现异常扰动,从而降低时间尺度的准确性和稳定性。因此,应当对原子钟异常数据进行实时处理。  近日,中国科学院国家授时中心时频基准实验室关于原子钟异常数据情况下改进的kalman滤波时间尺度算法研究取得了新进展。该研究引入等价协方差矩阵和自适应因子,对kalman滤波时间尺度算法进行改进。研究构造等价协方差矩阵来控制测量异常值对原子钟状态估计的影响,利用统计量实时计算自适应因子的量值来控制状态预测协方差矩阵的增长,以降低原子钟异常对状态估计的影响。  该研究从模拟数据和实测数据两方面原子钟数据异常情况下的kalman滤波算法进行分析,并与经典kalman滤波算法进行比较,结果表明当原子钟数据异常发生时,改进的kalman滤波算法能有效抵制异常数据对时间尺度的影响,可以提高时间尺度的准确度和稳定度。研究还分析了测量噪声为非高斯噪声情况下的算法性能,比较了最小二乘阈值设置用于异常数据处理的情况,结果显示改进的kalman滤波时间尺度优于最小二乘预处理计算时间尺度的稳定度。  相关研究成果以a robust kalman filter time scale algorithm with data anomaly为题,发表在journal of instrumentation(volume 16,june 2021 jinst 16 p06032)上。认为,算法针对原子钟数据异常情况提出了一种改进的kalman滤波时间尺度算法,模拟数据和实测数据均验证了该算法的有效性,具有实用价值。研究工作得到国家重大科技基础设施——长短波授时系统、国家自然科学基金、中科院“西部之光”等的支持。
图1.基于两种kalman滤波算法的时间尺度稳定度比较
图2.基于两种算法的原子钟改正时间偏差比较
研究团队单位:国家授时中心
来源:
爱科学

上一篇:研究人员在拓扑磁性材料中实现dzyaloshinskii-moriya相互作用的电调控

下一篇:

登录注册
欢迎内容投稿或举报!e-mail: ikx@ikx.cn
凯发天生赢家一触即发官网 copyright © 爱科学 iikx.com "));
网站地图