正文

机器学习算法赋能二维材料识别和检测方面取得进展 -凯发k8国际首页登录

  算法赋能二维材料识别和检测方面取得进展。 近日,中国科学院上海光学精密机械研究所研究员王俊团队在基于算法实现二维材料层数识别和物性检测方面取得进展,相关文章以thickness determination of ultrathin 2d materials empowered by machine learning algorithms为题发表于《激光与光子学评论》(laser photonics reviews)。

  自从发现石墨烯以来,大量新型二维层状材料逐渐被发现和制备,目前已成为涵盖绝缘体、拓扑绝缘体、半导体、半金属到超导体的庞大家族。通常,二维材料的层数对于调节纳米电子和光电器件的性能具有重要意义,在实现进一步的物理研究或器件制造之前,往往需要确定目标样品的最佳厚度。目前,通过光学技术获得光学图像或光谱信息后,后续的数据处理往往依赖研究人员的专业知识,并且受个人经验和主观因素影响较大。

  近年来,改变了现代社会的诸多方面,作为其最重要的子领域,通过收集和分析数据以预测复杂系统的行为并建立解决问题的模型,为物理、化学、材料科学等传统研究领域带来了新的发展机遇和凯发天生赢家一触即发官网的解决方案。例如光学图像作为实验室中最容易获取的数据集,是解决图层识别高通量和实时性要求的简单方法,算法可以提取图像中的基本特征并建立决策模型,同时较好地适用于不同的光学系统,以满足不同用户对自动光学识别和表征的要求。除了光学图像,算法还可以准确高效地分析光谱数据,这不仅可以利用光谱特征信息快速得到所需的样品厚度,还可以从材料本秉特性出发,有效解决不同实验平台间测试数据误差带来的不利影响。更为重要的是,这些算法赋能的光学凯发天生赢家一触即发官网的解决方案显著促进了建立从数据出发的统一、快速、低成本、无损的测量方法和标准,进而有力推动了二维材料的工业级应用落地。

  该文章系统总结了传统光学技术与算法深度融合面临的发展机遇与难题,提出检测对象的多样性、物理性质的差异性、测试环境的不稳定性、光学技术的易干扰性和相关算法的准确性对跨实验室标准制定带来的潜在风险与挑战。算法将对二维材料厚度测定的传统研究方法带来深刻变化,将人工劳动从现有的繁琐材料表征过程中逐渐解放出来,有助于推动研究的快速发展,逐步走向实际应用。(来源:中国科学院上海光学精密机械研究所)

  相关论文信息:https://doi.org/10.1002/lpor.202200357

  算法赋能二维材料识别和检测

  作者:王俊等 来源:《激光与光子学评论》

来源:
爱科学

上一篇:科学家揭示杂种优势“聚合”新机制

下一篇:耐海水腐蚀新型高强注浆材料研究获进展

登录注册
欢迎内容投稿或举报!e-mail: ikx@ikx.cn
凯发天生赢家一触即发官网 copyright © 爱科学 iikx.com "));
网站地图