正文

蓝光近场太赫兹非线性光学技术 -凯发k8国际首页登录

  蓝光近场太赫兹非线性光学技术。 近日,美国布朗大学物理系的angela pizzuto等人完成了第一个使用蓝光的扫描近场显微镜的实验演示。通过410纳米的飞秒脉冲,研究人员直接从体硅中产生太赫兹脉冲,以纳米级的分辨率进行空间分辨,这些信号提供了使用近红外激发无法获得的光谱信息。他们开发了一个新的理论框架来解释这种非线性相互作用,使得材料参数的精确提取成为可能。这项工作为使用扫描近场显微镜方法研究技术上相关的宽带隙材料建立了一个可能的新领域。

  背景介绍

  上世纪90年代中期,散射型扫描近场光学显微镜(s-snom)的出现,改变了亚波长光学领域。这种技术涉及到将电磁辐射耦合到一个尖锐的亚波长金属尖端,并随后在远场测量从该尖端-样品交界处散射的辐射。在过去的十年里,这种近场测量的方法在光谱的红外和太赫兹区域产生了显著的影响。基于孔径的亚波长光谱学方法是具有挑战性的,随着波长的增加,入射波与金属尖端的耦合变得更容易,而空间分辨率仍然受到尖端尺寸的限制。关于短波长辐射与纳米级尖端的耦合是一项艰巨的任务,阻碍了对重要的宽带隙材料的纳米级研究,如硅和氮化镓等。这些材料已经用低于带隙的激发方式在近场进行了线性光学研究。将纳米级的非线性光学方法应用于其他材料已比较成熟,但由于将该方法应用于这些高度相关的材料系统一般需要更高的能量光激发,至今还没有实现。

  布朗大学的angela pizzuto等人描述了一个入射光子能量超过3ev的扫描近场光学显微镜测量。使用410纳米的飞秒脉冲,研究人员照亮了一个锋利的金属原子力显微镜(afm)尖端,并通过二阶非线性光学过程诱导来自几种不同材料的太赫兹发射,以实现具有纳米级空间分辨率的激光太赫兹发射显微镜(ltem)。由于宽直接带隙以上的双光子激发,泵浦光子的高能量使大块晶体硅的强太赫兹发射成为可能。激光太赫兹发射显微镜的特性导致了对光学对准的要求大大放宽;传统的线性扫描近场光学显微镜使用纳米尖来限制入射波,这种聚焦短波长辐射在纳米尖下的精确对准实际上是有挑战性的。

  创新研究

  在实验中,通过对一小部分的宏观光生太赫兹偶极子的外耦合,可以获得纳米级的分辨率,研究人员首次实现了在扫描近场光学显微镜中使用紧密聚焦的蓝光。他们得到了第一个硅的近场激光太赫兹发射显微镜图像,并将结果与太赫兹扫描近场光学显微镜通过尖端的太赫兹脉冲的弹性散射获得的结果相比较。

  图1是激光路径和扫描近场光学显微镜实验装置示意图。近红外、蓝光和太赫兹光束分别产生,其中太赫兹脉冲使用传统的光电导天线产生,所有的三束光重叠并耦合到原子力显微镜中。散射或发射的太赫兹脉冲在另一侧通过自由空间电光采样进行相干检测。

  图1 实验装置示意图

  为了说明在宽带隙材料中使用激光太赫兹发射显微镜的价值,研究人员使用硅片作为样品,它在近红外激发下不会发出明显的太赫兹辐射。该硅片有一个小的区域,受到了离子注入,随后的退火激活了这个区域注入的掺杂物。这样硅片包含两个掺杂密度非常不同的区域,它们之间有一个清晰的边界。研究人员对这个边界区域进行了线性和非线性测量,并对结果进行比较。

  图2 硅样品的太赫兹辐射。(a)太赫兹脉冲。(b)太赫兹脉冲峰峰值与泵浦光束的平均功率之间的关系

  首先,当用超快蓝光泵浦时,未注入的基底和注入的区域都会发出太赫兹脉冲。图2a显示了由蓝光激发的thz脉冲,在探针敲击频率的二次谐波处解调得到的结果。可以观察到,轻度掺杂的基底比重度掺杂的植入区域产生明显更多的太赫兹发射。为了更好地理解太赫兹的产生机制,研究人员测量了发射的太赫兹峰峰值与蓝色泵浦光束的平均功率之间的关系,如图2b所示。当功率在大约2 mw以上,太赫兹发射强度受蓝光功率增加的影响较小;事实上,一旦泵浦通量足够高,很大一部分可用的电荷载流子将被光激发,任何多余的泵浦光子将被高的局部导电性屏蔽。由图2b中的插图可以看出,发射的太赫兹场的振幅和泵浦光功率之间有一个明显的二次方关系。这表明thz产生的主要机制是双光子吸收;价带中的载流子吸收了超过6 ev的泵浦能量,并被激发到远高于块状si的宽4.2 ev的直接带隙之上。该实验结果为扫描近场光学显微镜方法在宽带隙材料上的应用提供了新的可能性。

  该文章被发表在《light: science applications》期刊上,题为near-field terahertz nonlinear optics with blue light,angela pizzuto是文章的第一作者。(来源:lightscienceapplications微信公众号)

  相关论文信息:‍https://www.nature.com/articles/s41377‍-023-0‍1137-y

  特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负凯发k8国际首页登录的版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

  作者:angela pizzuto 来源:《光:科学与应用》

来源:
爱科学

上一篇:

下一篇:

登录注册
欢迎内容投稿或举报!e-mail: ikx@ikx.cn
凯发天生赢家一触即发官网 copyright © 爱科学 iikx.com "));
网站地图