在诊断试验中,我们比较两个模型的优劣时,除了可以比较两个模型下面积外,还可以用定量的指标来比较一个模型比另外一个模型诊断准确率改进的程度。前面的文章是我们介绍了nri(net reclassification improvement,重分类改善指标),nri定量地表示一个指标在某界值下的诊断准确率比另一指标准确率提高多少,容易理解,也比较容易计算。缺点是只考虑了界值时的情况,同时另外一个指标可以弥补这个不足,即idi。
idi(integrated discrimination improvement,综合判别改善指数)也是pencina等人于2008年提出的,它使用模型(或指标)对每个个体的预测概率计算得到,计算方法为:
p1,events和p2,events为金标准阳性的所有研究对象在模型1和模型2中诊断为阳性的平均概率,p1,noevents和p2,noevents为金标准阴性的所有研究对象在模型1和模型2中诊断为阳性的平均概率。公式前半部分为金标准阳性(患者)中,计算每个个体的模型1的预测概率与模型2的预测概率之差,再计算所有差的平均数,此平均值越大,认为模型1较好;公式后半部分为金标准阴性(非患者)中,计算每个个体的模型1的预测概率与模型2的预测概率之差,再计算所有差的平均数,此平均值越小,认为模型1较好;因此总体来说,idi越大,认为模型1越好。idi的检验思想与auc类似,分别考虑了不同界值下指标的整体情况,可以代表指标(模型)的整体改善情况。
nri和idi的应用定量地解决了两个模型诊断效能比较的问题,可以定量评价一个指标比另外一个指标诊断效能改善情况。nri和idi两个指标可以形象地展示研究对象被正确重新分类(判别)的比例,易于理解,也逐渐被研究者接受。在卫生经济学评价中两个指标的应用价值更高,nri和idi可以比较容易计算成本效益,是传统指标不具备的功能,预计将会广泛用于卫生经济学研究中。
上一篇:临床研究中的混杂偏倚是什么?
下一篇:多中心临床研究的中心越多越好吗?